

Indian School Al Wadi Al Kabir

Unit test (2025-2026)

Class: XI Subject: Physics (042) Max. marks: 30 Date: 15/05/2025 SET- 1 Time: 1 hour

MARKING SCHEME

Section A

1	(d) the particle moves at a constant velocity up to a time t_0 , and then stops.	
2	(c) Slope of the velocity – time graph	
3	(a) 125 m	
4	(a) a unit vector	
5	(b) $\vec{A} = \vec{C} + \vec{B}$	
6	(c) 8 unit	
7	(A) Both A and R are true and R is the correct explanation of A	
8	(A) Both A and R are true and R is NOT the correct explanation of A	

Section B

9	Rate of change in displacement	1+1
	By slope of tangent of v-t graph	
	Or	
	Distance = Area of both triangles = $2 \times \frac{1}{2} \times 5 \times 20 = 100$ m.	
	As displacement is zero, average velocity is zero.	
10	Def. of unit velocity	1 + 1/2
	Finding magnitude, A = $\sqrt{A_x^2 + A_y^2 + A_z^2}$	+1/2
	unit vector = \vec{A} /A= $\frac{Ax \hat{i} + Ay \hat{j} + Az \hat{k}}{\sqrt{A_x^2 + A_y^2 + A_z^2}}$	

Section C

Section D

14 (i)	(a) always less than its magnitude	1
(ii)	(b) 58 J	1
(iii)	(d) 74 J	1
(IV)	(a) 0 J or (a) Force opposes motion	1

Section E

